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ABSTRACT 

We prove that the location -2 + a3(2 1 of the three-particle Regge 

pole in e3 theory obeys 

(~~(0) > 2. 2292714924 40) 

where -2 f cu(O) is the position of the Reggeon-particle cut. 
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In the previous paper* on the high energy behavior of $3 theory 

we demonstrated that in addition to the usual Mandelstam diagrams 

which lead to the “Reggeon-particle” cut located at (we take m = 1) 

2 
-2 +Q(o)=-2 + -L- TI 

16~~ 
(1) 

there is a much larger class of diagrams which are equally important. 

We also showed that when all these diagrams are included the full 

amplitude has a three-particle Regge pole at -2 + @3(n) where 

cl,(A) = sup h’(c) (Y(C) 
h 

h(&&‘)(;f+l)-5(;2+i)-‘[(~-&?)2 +I]-* 1 
(2) 

with 

1 
G2+1 g-gy2+1 

(3) 

The purpose of this note is to show that 

o,(O) > 2. 2292714924 a(O) . 

To prove (4) we choose in (2) 

h(;)=(<2+1) * -312 

(4) 

(5) 

Then, for convenience, define J to be the right-hand side of (2) 

evaluated with (5) divided by 20!(O). Explicitly, since 
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we have 

J =,,-2 
ll 

d2k’&* 1 - 1 1 
(i?“+ip 2.1 (lzTq+ 1 

Td2C 1 * 1 
(lY2 + iJ2 (5 +i)2 (k-k’j2 +1 * 

(7) 

Define the two-dimensional Fourier transform by 

d2k’ e 

Then, using 

J d2;A(<)B& = 
r 2+ 

1 
d LiP;(&i6(<) 

and 

& 
.* -+ 

d’k’d?’ A(k’)B(k-k’)elS’k = zn&T)r?(y) 

and defining 

e 
i;i* ii+ 

(lT2+ I$ 

(8) 

(9 ) 

(10) 

we have 
m 

J =4 d’k5 [F3(5)$W2 + 2F2K)FiK)‘] . (12) 

Now 
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(13) 

when K. CC) is the modified Bessel function of the second kind. Thus 

we find by repeated differentiation t,hat 

F1( 5) = Kg(L) 

F2(5) = - ;K;(r) 

and 

L3 a 
F3(5) = 8 z 5 -* & Kg(L) . 

Using the differential equation2 for K. 

K” + c-‘K- 
0 0 

-Kg=0 

we rewrite (16 1 as 

F3(L)= $L2[-dKo’ +Ko] . 

(14) 

(15) 

(16) 

(17) 

($8 ) 

Substituting (14), (15) and (18) into (12) yields 

m 

J=; 

I 1 
dL C3 (-2r-‘K;+KO)K; +2K; (K;)’ . (19 ) 

0 

Integrate the last term by parts to obtain 
m 

J-i 

i 

d&L2K; (6K’O + Kg) . 

0 

(20) 

Then, if we integrate the first term by parts and define 



I1 = d5 5KoK13 

and 

I2 = dL ~3Kol~~3 
0 

we find 
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1 
J = 21i - z I2 . 

To proceed further we use Nicholson’s formula3 

m 

Ko(L12 = 2 dt K0(25 cash t) 

and the integral4 

al 

2P+2 l-(1 - p) 

I 

dt Ko(&Ko(t)t-P 

0 

(21) 

(22) 

(23) 

(24) 

= @P-l 
F($ - fP,f - +p; 1 - p; 1 -cY-2)r(+$p)4, (25) 
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where F(a, b;c;~z ) is the hypergeometric function. We find 
m I1 = c dt (2 cash t) -2 F [1, 1;2;1-(2 cash t)-2] 

Jo 
and 

m 

I2 = f 
I 

dt (2 cash t) -4 F[2, 2;i - (2 cash t)-2]. 

0 
5 

Specifically, we have 

and 

Therefore 

(26) 

(27) 

F(1, i;2;~2) = -z -Iln(l-z) 

F(2, 2;4;z) = 6{[-2!zw3 + z-2]ln(1-z) - 2 zw2). (28 

and 

co 

I1 = 2 
dt In (2 cash t) 

(2 cash t )2- 1 
(29 

m 

I2 =8 
I 

(2 dw2+l In (2 cosht) _ 1 

(2 cash t)2 - 1 I 

. 

0 (30) 

Make the change of variable 

x =e2t (31) 
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to obtain 

and 

(32) 

co 

x 

I 

(x + I)2 +x 

[(i+~)~-xJ~ (x+I)~-x 
ln(l +x)-l . 

I 
(33) 

Then let 

(34) 

and find 

(35) 

and 
1 

dy y(l - y) 1 1+y;y2 

(I - y + y2J2 I-y+y2 
Iny+1 . (36) 

7 

Next define 

= = 2y - 1. 

Then 
(37) 

(38 1 

and 1 
I~=-+ : 

2 
-‘-; )+2 3 - z2 

i . 
(39) 3+z 

Therefore we find 
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and hence 

I2 = $ I1 - $ (40) 

J= $I&=12+1. (41) 

By expanding (35) as 
1 1 

l+y 

l+Y 
31ny=-+ 

m 
dy (1 + y)ln y c (-I? y3n 

n=O 

= $- 5 (-IIn l(3n + zt)-2 ir (3n+2)-2] 
n=O 

(42) 

and using 
6 

E( z +n) -2 = qJ’(z), (43) 
n=O 

where $(z ) is the logarithmic derivative of the gamma function, we 

have 

I1 = $ ~‘(~)+~‘(~)-*‘(S)-~‘(~) . 
I i 

(44) 

Numerically we find 

and 

I1 = 0.5859768097 (45a) 

I2 = 0.1146357462 . (45b) 

Using (45) in (41) and using the definition of J (4) follows. 
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